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The soluble form of methane monooxygenase (MMO) purified 
from Methylosinus trichosporium OB3b is a three protein 
component enzyme that catalyzes the reaction1-2 

CH4 + NADH + H + + O2 — GH3OH + N A D + + H2O 

Past studies have shown that the oxygen activation and insertion 
chemistry of MMO occurs on the hydroxylase component,2-5 

which contains two (identical) spin-coupled, oxygen-bridged 
dinuclear iron clusters.6-10 Many hydrocarbons are adventitiously 
oxidized by MMO.11-15 Our studies of the mechanism of MMO 
have shown that the cluster is activated for reaction with O2 

during the natural catalytic cycle by reduction to the Fe11Fe11 

state.2 Recently, we studied the transient reaction kinetics of the 
Fe11Fe11 hydroxylase with O2 in the presence of the component 
B of the MMO system.16 Among the intermediates detected was 
a yellow species (Xnuu = 330 and 430 nm) termed compound Q. 
Substrates were found to have little effect on the rate of compound 
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Figure 1. (A) Zero-field Mdssbauer spectrum of "Fe-enriched hydrox
ylase prepared as described in the text. The solid line is a spectrum of 
Fe11Fe11 hydroxylase freeze-quenched in the absence of O2. (B) Spectrum, 
representing compound Q, prepared by subtracting the Fe11Fe11 (30%) 
and Fe111Fe111 (25%) species from the experimental data. The solid line 
is a least-squares fit for AEQ » 0.53 mm/s and ipe = 0.17 mm/s. 

Q formation, but they greatly accelerated its decay. The decay 
rate depended upon both the concentration and the type of 
substrate present and also matched the formation rate of product 
bound in the active site. These observations suggest that 
compound Q may be either the activated form of the enzyme that 
leads directly to substrate hydroxylation or an immediate 
precursor. For the present study, we have trapped compound Q 
by rapid freeze quench techniques for characterization by 
Mdssbauer spectroscopy. 

The Mossbauer sample of compound Q was prepared by rapid 
mixing of 240 nmol of substrate-free Fe11Fe11 hydroxylase2-8 (sp 
act. 1200 nmol min-1 mg-1) and 480 nmol of component B (sp 
act. 10 100 nmol min-1 mg-1) with a saturated solution of O2 in 
100 mM MOPS buffer, pH 7.7 at 4 0 C, using an Update 
Instruments stopped freeze apparatus. The mixture was allowed 
to age for 4 s to maximize compound Q formation and was then 
frozen by being sprayed into isopentane at -140 0 C. 

We have studied samples containing compound Q in zero field 
and in applied magnetic fields of 1.0, 3.0, 6.0, and 8.0 T. The 
4.2 K Mdssbauer spectrum of Figure IA contains three species. 
Approximately 30% of the iron belongs to a broad doublet (AEQ 
« 2.4-3.1 mm/s and S « 1.3 mm/s). This doublet belongs to 
clusters in the Fe11/ Fe11 state since the same features are observed 
for anaerobically freeze-quenched Fe11Fe11 hydroxylase (solid line 
in Figure IA). Assignment of this doublet to the Fe11Fe11 

hydroxylase is further supported by the high-field spectra (Figure 
2), which, for the Fe11Fe11 component, exhibit paramagnetic hy-
perfine features similar to those reported for the (isopentane-
free) Fe11Fe11 hydroxylase cluster.6 

A second species exhibits doublets with features previously 
observed for Fe111Fe111 hydroxylase samples; AEQ «* 1.05 mm/s 
and 5 « 0.50 mm/s.6'9 The high-energy lines of this species are 
indicated by the arrows in Figures 1A and 2. Spectral subtractions 
suggest that it accounts for roughly 25% of the iron. The 6.0-T 
spectrum of Figure 2 shows that this species is diamagnetic, in 
accord with assignment to the native Fe111Fe111 state attained after 
decay of compound Q. 

The most abundant species (compound Q) in the spectrum of 
Figure IA is revealed after subtraction of the Fe11Fe11 (30%) and 
Fe111Fe111 species (25%) from the experimental data,17 as shown 
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Figure 2. Mfissbauer spectrum (4.2 K) of the sample of Figure 1A recorded 
in a 6.0-T parallel field. The solid line drawn above the data is a spectrum 
of the Fe11Fe11 hydroxylase simulated as described in ref 6. The solid line 
drawn through the data is a spectrum calculated for compound Q with 
the assumption that the cluster is diamagnetic (5 = 0). The excellent 
match between the calculated and observed splittings shows that the 
ground state of the cluster is indeed diamagnetic. 

in Figure IB. At 4.2 K, compound Q contributes one well-
defined doublet with AEQ = 0.53 mm/s and 5 = 0.17 ± 0.02 
mm/s; the same value for AEQ was observed at 90 K. The isomeric 
shift of compound Q is significantly smaller than that of the 
Fe111Fe111 state of the hydroxylase and other iron-oxo proteins 
(5Fein = 0.45-0.55 mm/s),18'19 suggesting that the iron of 
compound Q is at the FeIV oxidation level. The observed isomeric 
shift is close to those reported for both the F e I V = 0 hemes (0 .03-
0.10 mm/s) 2 0 and the ferryl intermediate derived from a model 
complex for iron-oxo proteins (0.11 mm/s at 4.2 K)21 described 
by Que and co-workers.22 A control sample, quenched 0.3 s after 
mixing with O2, contained ca. 70% of the Fe11Fe" species, ca. 
20% of compound Q, and ca, 10% of the Fe111Fe111 state, in 
reasonable agreement with our transient kinetic studies.16 

Spectra recorded at 4.2 and 50 K in applied magnetic fields 
up to 8.0 T show that the Fe™ sites of compound Q are 
diamagnetic, as demonstrated by the spectral simulation shown 
in Figure 2. The observed diamagnetism rules out the possibility 
that the FeIV sites reside in FemFe I V clusters because this mixed-
valence state would be paramagnetic. It follows that the FeIV 

spectrum originates from clusters containing two (indistinguish
able) FeIV sites. The AEQ and 6>e values of compound Q are 
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compatible with either intermediate-spin22 ( 5 = 1 ) FeIV or high-
spin23-24 (S = 2) FeIV sites.25 Since both of these spin states are 
paramagnetic, the observed diamagnetism implies that two FeIV 

sites with the same spin state are antiferromagnetically coupled; 
analysis of the high-field data suggests a lower limit for the 
exchange coupling constant of / > 60 cm - 1 (H • JSi-S2). 

In combination with the transient kinetic analysis reported 
elsewhere,16 the spectroscopic studies of compound Q presented 
here represent the first isolation and characterization of a high-
valent iron-oxo species capable of hydrocarbon oxidation in either 
non-heme or heme protein oxygenase chemistry. Both iron sites 
of compound Q are clearly at a higher oxidation level than the 
transient species recently reported for ribonucleotide reductase,28 

the latter consisting of a protein radical that is exchange coupled 
to an Fe111Fe111 cluster. The oxidation level of compound Q is also 
substantially above that of a n-1,2 peroxo bridged diiron model 
complex (5Fe'n = 0.52 mm/s) .2 9 The oxidation level of compound 
Q appears to be formally equivalent to that of the proposed 
activated intermediate of cytochrome P450,30 in accord with our 
previous proposal for the involvement of FeIVFeIV in the reactive 
state of the hydroxylase.1-5 Most interesting is the observation 
that the M6ssbauer spectra of the two iron sites in the FeIVFeIV 

cluster of compound Q are indistinguishable, suggesting that the 
activated oxygen is bound to the cluster symmetrically. For 
example, a single oxygen atom might bridge between two cluster 
irons or two equivalent oxygen atoms may be present in any of 
several possible configurations of a diferryl unit. 
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